

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 177 (2004) 1681-1694

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Two new lithium uranyl tungstates $Li_2(UO_2)(WO_4)_2$ and $Li_2(UO_2)_4(WO_4)_4O$ with framework based on the uranophane sheet anion topology

S. Obbade,* S. Yagoubi, C. Dion, M. Saadi,¹ and F. Abraham

Laboratoire de Cristallochimie et Physicochimie du Solide, CNRS UMR 8012, ENSCL-USTL, BP 108, 59652 Villeneuve d'Ascq cedex, France

Received 23 October 2003; received in revised form 15 December 2003; accepted 18 December 2003

Abstract

Two new lithium uranyl tangstates $\text{Li}_2(\text{UO}_2)(\text{WO}_4)_2$ and $\text{Li}_2(\text{UO}_2)_4(\text{WO}_4)_4\text{O}$ have been prepared by high-temperature solid state reactions of Li_2CO_3 , U_3O_8 and WO_3 . For each compound, the crystal structure was determined by single crystal X-ray diffraction data, using a Brucker diffractometer, equipped with a SMART CCD detector and MoK α radiation. The crystal structures were solved at room temperature by direct methods followed by Fourier difference techniques, and refined by a least square procedure on the basis of F^2 for all independent reflections, to $R_1 = 0.035$ for 65 refined parameters and 807 reflections with $I \ge 2\sigma(I)$ for $\text{Li}_2(\text{UO}_2)(\text{WO}_4)_2$ and to $R_1 = 0.051$ for 153 refined parameters and 1766 reflections with $I \ge 2\sigma(I)$ for $\text{Li}_2(\text{UO}_2)_4(\text{WO}_4)_4\text{O}$.

The crystal structure of $\text{Li}_2(\text{UO}_2)(\text{WO}_4)_2$ is formed by perovskite sheets of WO₆ octahedra, one octahedron thickness, connected together by $(\text{UO}_5)_{\infty}$ infinite chains, and creating tunnels parallel to the *c*-axis. The lithium atoms are localized in the tunnels. The structure can be deduced from that of $\text{U}M\text{O}_5$ (M = Mo, V, Nb) compounds by the replacement of half U atoms by Li. The crystal structure of $\text{Li}_2(\text{UO}_2)_4(\text{WO}_4)_4\text{O}$ consists of UO₇ pentagonal bipyramids, UO₆ tetragonal bipyramids and WO₆ distorted octahedra linked together to form a three-dimensional framework creating paralleled channels filled with lithium cations. The structure can also be described by the stacking of layers with the uranophane sheet anion topology similar to those obtained in UMO_5 (M = Mo, V, Nb, Sb) compounds with an ordered population of pentagons by U and Li and of squares by U and W. The measured conductivities are comparable to those of the better Li⁺ ion conductor solid electrolytes such as LISICON or Li- β -alumina.

Crystallographic data: Li₂(UO₂)(WO₄)₂, orthorhombic symmetry, space group *Pbcn* and unit cell parameters a = 7.9372(15) Å, b = 12.786(2) Å, c = 7.4249(14) Å, $\rho_{cal} = 6.87(2)$ g/cm³, $\rho_{mes} = 6.89(1)$ g/cm³ and Z = 4. Li₂(UO₂)₄(WO₄)₄O, monoclinic symmetry, space group *C*2/*c* and unit cell parameters a = 14.019(4) Å, b = 6.3116(17) Å, c = 22.296(6) Å, $\beta = 98.86(3)^{\circ}$, $\rho_{cal} = 7.16(2)$ g/cm³, $\rho_{mes} = 7.25(3)$ g/cm³ and Z = 4. \bigcirc 2004 Elsevier Inc. All rights reserved.

Keywords: Alkali uranyl tungstates; Crystal structure refinement; Solid state synthesis; Cationic conductivity

1. Introduction

Uranyl molybdates have received considerable attention these last years because, independently of the mineralogical and environmental aspects, they present an important structural interest if we consider the Mo^{6+}

*Corresponding author. Fax: +33-320436814.

coordination possibilities leading to different oxoanions with tetrahedral, square pyramidal or octahedral environment. This structural wealth can be illustrated by the following examples of different monovalent ion uranyl molybdates.

Mostly, Molybdenum atom is tetrahedrally coordinated by O atoms, this is particularly right for numerous compounds based on the binary lines $UO_2MoO_4 - M_2MoO_4$ and formulated $M_2(UO_2)_6(MoO_4)_7 \cdot H_2O$ ($M = NH_4$, Cs) [1,2], $(NH_4)_4[(UO_2)_5(MoO_4)_7](H_2O_5)_5$ [3], Cs₂(UO₂)₂(MoO₄)₃ [4], $M_2UO_2(MoO_4)_2$ with M =

E-mail address: obbade@ensc-lille.fr (S. Obbade).

¹Laboratoire de Chimie de Coordination et Analytique, Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, El Jadida, Maroc.

Na, K, Rb [5–7], $M_6UO_2(MoO_4)_4$ with M = Na, K and Cs [8,9]. Tetrahedral MoO₄ oxoanions are also found in the recently studied $K_2(UO_2)_2(MoO_4)O_2$ compound [10]. Square pyramid coordination is more uncommon but has been observed in $K_8(UO_2)_8(MoO_5)_3O_6$ [10]. To our knowledge, no example of uranyl-alkali metal molybdates with Mo⁶⁺ in octahedral environment has been published up today, but this coordination exists in the structure of UMo_2O_8 [11], and hydrated mineralogical varieties such umohoïte $[(UO_2)MoO_4(H_2O)]H_2O$ [12], iriginite $UO_2Mo_2O_7$. $2H_2O$ [13,14] and several alkali molybdates, $M_2Mo_2O_7$ (M = Na, K) [15,16] or $K_2Mo_4O_{13}$ [17].

These alkali metal uranyl compounds present mostly layered structures which confer to them potential properties in the domains of intercalation, ionic exchange and electrical ionic conductivity due to the interlayers cations mobility. In some cases like $M_2(UO_2)_6(MoO_4)_7 \cdot H_2O$ [1,2], a three-dimensional framework is observed.

The same diversity of polyhedra and analogous compounds are expected for W⁶⁺. For example, anhydrous uranyl oxides of the family UO2XO4 with X = S, Cr, Se, Mo and W are well known [18–21] and adopt the same crystal structure which results from the association of $(UO_2)O_5$ pentagonal bipyramids sharing four equatorial oxygen atoms with different XO_4 tetrahedra, the last equatorial oxygen atom being shared with an apical oxygen atom of a neighboring $(UO_2)O_5$ bipyramid. During the study of the UO₂–WO₃ system, four phases $U(WO_4)_2$, UW_3O_{11} , UW_4O_{14} and UW_5O_{17} have been identified by X-ray powder diffraction and high resolution electron microscopy [22]. The first compound is isotypic to the orthorhombic $Th(MoO_4)_2$ [23] with eight-coordinated uranium and four-coordinated tungsten. The other compounds are related to orthorhombic UMo_2O_8 [11], the structures are built from the intergrowth of corner-sharing WO₆ octahedra in ReO₃-type slabs of different thickness with slabs of edge-sharing UO₇ pentagonal bipyramids. Finally, another uranyl tungstate $UO_2(W_3O_{10})$ [24] is reported but its structure is unknown. The only indication of alkali metal uranyl tungstate found in the literature is about the preparation of $Na_2UO_2(WO_4)_2$ compound [25], but without any crystal structure characterization.

Recent studies in our group have focused on the preparation of new uranyl tungstates with various crystal structures. These efforts have resulted in the preparation of new alkali metal uranyl tungstates that belong to three families, $M_2UO_2(W_2O_8)$ with M = Na, K, $M_2(UO_2)_2(WO_5)O$ with M = K, Rb and $Na_{10}(UO_2)_8(W_5O_{20})O_8$ [26] where the tungsten atoms in the highest possible oxidation state adopt the three possible coordinations, tetrahedral, square pyramidal and octahedral. In the first family one-dimensional chains formed from edge-sharing UO₇ pentagonal

bipyramids are connected by two octahedra wide $(W_2O_8)_{\infty}$ ribbons formed from two edge-sharing WO₆ octahedra connected together by corners to built $[(UO_2(W_2O_8)^{2^-}]_{\infty}$ infinite layers. In the second family $M_2(UO_2)_2(WO_5)O$ (M = K, Rb), the coordination polyhedron of W⁶⁺ is a square pyramid and in Na₁₀(UO₂)₈(W₅O₂₀)O₈, W⁶⁺ is both in tetrahedral and octahedral coordination to give W₅O₂₀ units resulting from a WO₄ tetrahedron shares corners to four WO₆ octahedra. Very recently, the first family has been enriched with the crystal structure report of Na₂UO₂(W₂O₈) and α and β forms of Ag₂UO₂(W₂O₈) [27].

It is interesting to remark that the structural isotypy between molybdenum and tungsten compounds in the UO₂XO₄ family (X = S, Cr, Se, Mo, W), is generally not observed in doubled compounds of uranyl and alkali metals. For example, the compounds K₂UMo₂O₁₀ and K₂UW₂O₁₀ do not adopt the same crystal structure and their formulae must be written K₂UO₂(MoO₄)₂ [6] and K₂UO₂(W₂O₈) [26], respectively, because the cation Mo⁶⁺ is tetrahedrally coordinated whereas W⁶⁺ atom is in octahedral coordination to give W₂O₈ dimmers. A similar remark is available for K₂U₂MoO₁₀ and K₂U₂WO₁₀ which can be written K₂(UO₂)₂(MoO₄)O₂ [10] and K₂(UO₂)₂(WO₅)O [26], respectively, to differentiate the tetrahedral coordination of Mo⁶⁺ from the square pyramidal coordination of W⁶⁺.

As lithium often presents a particular behavior compared to the other alkali metals, it seemed interesting to study the ternary system $Li_2CO_3-U_3O_8-WO_3$ to see the effect of lithium on the structure as well as on the conductivity properties. Thus, two new compounds were obtained and the present work is dedicated to the synthesis, and crystal structure determination of two new uranyl–lithium tungstates, $Li_2UW_2O_{10}$ or $[Li_2UO_2(WO_4)_2]$ and $Li_2U_4W_4O_{25}$ or $[Li_2(UO_2)_4(WO_4)_4O]$ presenting original three-dimensional structural arrangements. Conductivity measurements are also reported for both compounds.

2. Experimental

2.1. Crystal and powder synthesis

Single crystals of $Li_2UO_2(WO_4)_2$ and $Li_2(UO_2)_4$ (WO₄)₄O were obtained by solid state reaction. Both compounds were prepared using a mixture of Li_2CO_3 (Aldrich), U_3O_8 (Prolabo) and WO₃ (Prolabo) in the molar ratio 1,2/3,1. The resulting of 2 g charge was thoroughly mixed and heated in a platinum crucible at 920°C during 48 h and slowly cooled at 5°C/h to room temperature. Washing of the obtained yellowish shiny crystalline product with ethanol allowed the separation of two kinds of single crystals. The yellow single crystals correspond to the $Li_2(UO_2)_4(WO_4)_4O$ phase and the orange colored single crystals belong to the $Li_2UO_2(WO_4)_2$ compound.

For both compounds, powder samples were synthesized by a solid state reaction between stoichiometric mixtures of Li_2CO_3 , WO_3 and U_3O_8 according to the following reactions:

$$Li_{2}CO_{3} + 2WO_{3} + \frac{1}{3}U_{3}O_{8} + \frac{1}{6}O_{2} \rightarrow Li_{2}UO_{2}(WO_{4})_{2} + CO_{2}$$
(1)

and

$$Li_{2}CO_{3} + 4WO_{3} + \frac{4}{3}U_{3}O_{8} + \frac{2}{3}O_{2}$$

$$\rightarrow Li_{2}(UO_{2})_{4}(WO_{4})_{4}O + CO_{2}$$
(2)

Mixed starting materials in the appropriate stoichiometries were heated at high temperature in air for two weeks with intermediate grindings. Pure powder samples were obtained at 600°C and 750°C for Li₂UO₂(WO₄)₂ and Li₂(UO₂)₄(WO₄)₄O, respectively. The achievement of the synthesis process for each sample was controlled by X-ray powder diffraction using a Guinier-De Wolff focusing camera and CuK α radiation.

2.2. Single crystal X-ray diffraction and structure determination

Well-shaped crystals of for Li2UO2(WO4)2 and $Li_2(UO_2)_4(WO_4)_4O$, with dimensions 0.080 mm-0.240 mm-0.062 mm and 0.030 mm-0.150 mm-0.052 mm, respectively, were selected for structure determination. Each single crystal was mounted on a Bruker Platform three circle X-ray diffractometer equipped with an 1 K SMART CCD detector and operating at 50 kV and 40 mA. For both compounds, preliminary unit cell parameters were determined from 30 frames with 20s exposure times. For each crystal, the intensities of reflections for a sphere were measured with a graphite monochromated Mo $K\alpha$ radiation, using a combination of three sets of 600 frames, where each frame covered a range of 0.3° in ω scan. Thus, a total of 1800 frames were collected with an exposure time of 50 s per frame. The intensity reduction and correction of Lorentz, polarization and background effects, were done by the program SAINTPLUS 6.02 [28]. For each single crystal data, absorption corrections based on the precise crystal morphology and indexed crystal faces were applied using the program XPREP of the SHELXTL package [29] followed by SADABS program [30]. Systematic absences of reflections were consistent with Pbcn and C2/c centro-symmetric space groups for Li₂UO₂(WO₄)₂ and $Li_2(UO_2)_4(WO_4)_4O_4$, respectively. The crystal structures were solved by a combination of direct methods and difference Fourier syntheses, and refined by full matrix least squares against F^2 , using SHELXTL package of programs [29]. Relevant crystallographic information are compiled in Table 1, and the final atomic positions with isotropic (Li) or equivalent (U, W

and O atoms) thermal displacements, and anisotropic displacement parameters for U, W and O atoms, are presented in Tables 2 and 3 for $\text{Li}_2\text{UO}_2(\text{WO}_4)_2$, and in Tables 5 and 6 for $\text{Li}_2(\text{UO}_2)_4(\text{WO}_4)_4\text{O}$, respectively. Selected interatomic distances with uranyl ion angles, and bond valence sums calculated using Burns et al. data [31] for U–O bonds and Brese and O'Keeffe parameters [32] for the other bonds, are reported in Table 4 and 7 for $\text{Li}_2\text{UO}_2(\text{WO}_4)_2$ and $\text{Li}_2(\text{UO}_2)_4(\text{WO}_4)_4\text{O}$, respectively.

2.3. Powder compounds characterization

For each compound, powder X-ray diffraction data used for lattice parameters refinement were recorded on a Siemens D5000 $\theta/2\theta$ diffractometer, at room temperature, using Bragg-Brentano geometry, with a backmonochromatized CuK α radiation. The diffraction patterns were scanned over the angle range 10–80°(2 θ) in step of 0.03°(2 θ) and a counting time of 20 s per step. The unit cell parameters were refined by a least-squares procedure from the indexed powder reflections. Powder X-ray diffraction pattern data and refined cell parameters with their merit factors F_{20} , as defined by Smith and Snyder [33], are reported in Tables 8 and 9 for Li₂UO₂(WO₄)₂ and Li₂(UO₂)₄(WO₄)₄O, respectively.

The densities measured with an automated Micromeritics Accupyc 1330 helium pycnometer using a 1-cm³ cell, indicated Z = 4 formula per unit cell for both compounds, with ($\rho_{\rm mes} = 6.89(1) \,{\rm g \, cm^{-3}}$, $\rho_{\rm cal} = 6.87(2) \,{\rm g \, cm^{-3}}$) and ($\rho_{\rm mes} = 7.25(3) \,{\rm g \, cm^{-3}}$, and $\rho_{\rm cal} = 7.16(2) \,{\rm g \, cm^{-3}}$) for Li₂UO₂(WO₄)₂ and Li₂(UO₂)₄ (WO₄)₄O, respectively.

For both compounds, differential thermal analysis (DTA) was carried out in air on a Setaram 92–1600 thermal analyzer in the temperature range 20–1100°C both on heating and cooling. These measurements showed the existence of non-congruent melting points for both compounds at about 720°C and 940°C for $Li_2UO_2(WO_4)_2$ and $Li_2(UO_2)_4(WO_4)_4O$, respectively. The decomposition of both compounds was also confirmed by powder X-ray diffraction analyses of residues after each DTA measurement showing the formation of $Li_2U_4W_4O_{25}$ and Li_2WO_4 for $Li_2UO_2(WO_4)_2$, of U_3O_8 and Li_2WO_4 for $Li_2UO_2(WO_4)_2$, accompanied by unidentified phases.

For conductivity measurements, powder samples were pelletized at room temperature and then sintered 50°C below their melting point for 2 h. Gold electrodes were sputtered on both flat faces and measurements were done by impedance spectrometry in the frequency range $1-10^{6}$ Hz with a Schlumberger 1170 frequency response analyzer. Measurements were made at 20°C intervals over the range 200–600°C, on both heating and cooling. Each set of values was recorded at a given temperature after a 1 h stabilization time.

Table 1

Crystal data, intensity collection and structure refinement parameters for $Li_2(UO_2)(WO_4)_2$ and $Li_2(UO_2)_4(WO_4)_4O$.

	Li ₂ (UO ₂)(WO ₄) ₂		$Li_2(UO_2)_4(WO_4)_4O$		
Crystal data					
Crystal symmetry	Orthorhombic		Monoclinic		
Space group	Pbcn		C2/c		
Unit cell refined from	a = 7.9372(15) Å		14.019(4) Å		
Single crystal data	b = 12.786(2) Å		6.3116(17) Å		
	c = 7.4249(14) Å		22.296(6)Å		
			$\beta = 98.86(3)^{\circ}$		
Unit cell volume	753.52(20)Å ³		1949.2(9) Å ³		
Ζ	4		4		
Calculated density $(g cm^{-3})$	ho = 6.87(2)		7.16(2)		
Measured density $(g \text{ cm}^{-3})$	$\rho = 6.89(1)$		7.25(3)		
Color	Orange		Yellow		
Data collection					
Temperature (K)	293(2)		293(2)		
Equipment	Bruker SMART CCD		Bruker SMART CCD		
Radiation MoKa	0.71073 Å		0.71073 Å		
Scan mode	ω		ω		
Recording $\theta \min/\max(\circ)$	4.08/29.24		2.94/29.99		
Recording reciprocal space	$-10 \le h \le 10$		$-16 \leq h \leq 19$	$-16 \leq h \leq 19$	
	$-17 \leq k \leq 17$		$-8 \leqslant k \leqslant 8$		
	$-10 \le l \le 10$		$-30 \leq l \leq 30$		
No. of measured reflections	4406		5437		
No. of independent reflections	807		1766		
Absorption coefficient μ (cm ⁻¹)	519.32		567.23		
Limiting faces and distances (mm)	100	0.040	100	0.015	
From an arbitrary origin	100	0.040	100	0.015	
	010	0.140	010	0.075	
	010	0.140	010	0.075	
	0 0 1	0.031	001	0.026	
	001	0.031	001	0.026	
<i>R</i> merging factor	0.034		0.077		
Refinement					
Refined parameters/restraints	65/0		153/0		
Goodness of fit on F^2	1.027		0.996		
$R_1 \left[I > 2\sigma(I) \right]$	0.035		0.051		
$wR_2 \ [I > 2\sigma(I)]$	0.085		0.103		
R_1 for all data	0.037		0.054		
wR_2 for all data	0.088		0.113		
Largest diff. peak and hole($e \dot{A}^{-3}$)	5.292/-4.000		4.690/-5.515		

 $\frac{4.090/-5.515}{R_1 = \sum_{i} (|F_o| - |F_c|) / \sum_{i} |F_o|, \quad wR_2 = [\sum_{i} w(F_o^2 - F_c^2)^2 / \sum_{i} w(F_o^2)^2]^{1/2}, \quad w = 1 / [\sigma^2(F_o^2) + (aP)^2 + bP] \text{ where } a \text{ and } b \text{ are refinable parameters and } P = (F_o^2 + 2F_c^2)/3.$

Table 2
Atomic positions, equivalent or isotropic displacement parameters (Å ²) of Li ₂ (UO ₂)(WO ₄) ₂

Atom	Site	Occ	x	у	Ζ	$U_{ m eq}/{U_{ m iso}}^*$
U	4 <i>c</i>		0	0.02101(5)	1/4	0.0133(2)
W	8d		0.03779(6)	0.25671(3)	0.00005(8)	0.0048(2)
O(1)	8d		-0.2277(17)	0.0222(9)	0.257(2)	0.028(3)
O(2)	4c		0	0.2122(11)	1/4	0.010(2)
O(3)	4c		0	0.2675(11)	3/4	0.013(2)
O(4)	8d		0.2563(17)	0.2505(7)	0.0209(19)	0.015(2)
O(5)	8d		0.0113(17)	0.3914(7)	0.0436(14)	0.012(2)
O(6)	8d		0.005(2)	0.0999(7)	-0.0309(13)	0.015(2)
Li(1)	4c	0.67^{a}	0	0.491(4)	3/4	0.012(9)*
Li(2)	8 <i>d</i>	0.67 ^a	-0.168(5)	0.496(2)	-0.033(5)	0.014(7)*

^a Fixed value.

Table 3 Anisotropic displacement parameters for U, W and O of Li_2(UO_2)(WO_4)_2 (Å^2).

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
U	0.0284(4)	0.0086(3)	0.0031(3)	0	0.0001(4)	0
W	0.0051(3)	0.0065(3)	0.0028(3)	-0.0002(1)	0.0001(2)	0.0001(2)
O(1)	0.039(6)	0.014(5)	0.032(7)	-0.001(4)	0.000(8)	-0.016(8)
O(2)	0.008(6)	0.018(7)	0.005(6)	0	0.003(7)	0
O(3)	0.022(7)	0.012(6)	0.006(6)	0	-0.005(9)	0
O(4)	0.020(7)	0.019(5)	0.006(3)	0.000(4)	0.003(5)	0.002(3)
O(5)	0.012(5)	0.007(4)	0.017(5)	-0.004(4)	0.001(5)	-0.002(4)
O(6)	0.034(6)	0.004(4)	0.007(4)	-0.001(5)	-0.006(6)	-0.002(3)

Table 5

O(12)

O(13)

Li

8f

8f

8f

 $(\overset{1}{\lambda}^{2}) \rightarrow f I = (IIO) (WO) (C)$

Note: The anisotropic displacement factor exponent takes the form $-2\pi^2 [h^2 a^{*^2} U_{11} + \dots + 2hka^* b^* U_{12}]$.

Table 4 Bond distances (Å), angles (°) and bond valences S_{ij} of metal atoms in $Li_2(UO_2)(WO_4)_2$.

U environment

	L12(U	$J_{2}J_{4}(w O_{4})_{4}O.$			
Atom	Site	x	у	Ζ	$U_{ m iso}^{*}/U_{ m eq}$
U(1)	4 <i>e</i>	0	0.04210(19)	3/4	0.0086(3)
U(2)	4a	1/2	1/2	0	0.0095(3)
U(3)	8f	0.29366(6)	0.44785(14)	0.84438(4)	0.0080(2)
W(1)	8f	0.27992(7)	0.51275(13)	1.08680(5)	0.0090(2)
W(2)	8f	0.08111(7)	0.49831(13)	0.68717(4)	0.0079(2)
O(1)	4e	0	0.434(4)	3/4	0.018(5)
O(2)	8f	0.2044(12)	0.455(3)	0.7754(7)	0.013(4)
O(3)	8f	0.1893(11)	0.564(3)	0.6502(8)	0.015(4)
O(4)	8f	0.3020(12)	0.225(2)	0.0980(7)	0.012(3)
O(5)	8f	0.3885(13)	0.450(3)	0.9128(8)	0.016(4)
O(6)	8f	0.1072(12)	0.202(2)	0.6916(8)	0.015(4)
O(7)	8f	-0.0911(13)	0.034(3)	0.6822(9)	0.020(4)
O(8)	8f	0.0892(12)	0.786(2)	0.7132(7)	0.014(4)
O(9)	8f	-0.0104(12)	0.515(2)	0.6256(9)	0.014(4)
O(10)	8f	0.1903(14)	0.524(3)	0.0235(8)	0.020(4)
O(11)	8f	0.4841(12)	0.227(2)	0.0182(7)	0.014(4)

0.2732(13)

0.3853(13)

-0.102(4)

Atomic positions, equivalent or isotropic displacement parameters

3. Description of the crystal structures and discussion

0.774(3)

0.582(3)

0.491(7)

0.1252(8)

0.0551(8)

0.560(3)

0.024(4)

0.022(4)

 $0.022(10)^*$

3.1. $Li_2UO_2(WO_4)_2$

The crystal structure of $Li_2UO_2(WO_4)_2$ is built from an assemblage of WO₆ distorted octahedra and UO₇ pentagonal bipyramids to give a three-dimensional arrangement. The only independent uranium atom is bonded to two symmetrical O(1) atoms at short distances of 1.808(13) Å, forming a nearly linear uranyl $UO_2^{2^+}$ ion, 179.1(6)°, which is coordinated by five equatorial oxygen atoms, O(2) in the particular (4*c*) site at 2.445(14) Å and two pairs of symmetrical atoms O(6)–O(6)ⁱ and O(6)ⁱⁱ–O(6)ⁱⁱⁱ at 2.317(10) and 2.245(9) Å, respectively, to give a pentagonal bipyramidal environment. The UO₇ bipyramids share the symmetrically opposite O(6)–O(6) equatorial edges, creating infinite (UO₅)_∞ chains running down the

		S _{ij}
$U-O(1)^i$	1.808(13)	1.597
U–O(1)	1.808(13)	1.597
U–O(6) ⁱⁱ	2.245(9)	0.688
$U-O(6)^{iii}$	2.245(9)	0.688
$U-O(6)^i$	2.317(10)	0.599
U–O(6)	2.317(10)	0.599
U-O(2)	2.445(14)	0.468
O(1) ⁱ –U–O(1)	179.1(6)	$\sum s_{ij}$ 6.239
W environment		
		S _{ij}
W–O(4)	1.743(14)	1.600
W-O(5)	1.765(9)	1.512
$W-O(3)^{x}$	1.886(1)	1.087
$W-O(2)^{1V}$	1.964(4)	0.881
W-O(6)	2.035(9)	0.727
$W-O(4)^{v}$	2.242(14)	0.417
O5–W–O(6)	165.2 (4)	$\sum s_{ij}$ 6.224
Li environment		
		S _{ij}
$L_{11} = O(5)^{vi}$	2.149(37)	0.157
$L_{11}-O(5)^{vii}$	2.149(37)	0.157
$L_{11}-O(1)^{vm}$	2.169(14)	0.150
Lil-O(1) ^{ix}	2.169(14)	0.150
$Lil-O(5)^{x}$	2.526(28)	0.057
$Lil-O(5)^{i}$	2.526(28)	0.057
Lil-O(3)	2.858(20)	0.023
		$\sum s_{ij} 0.751$
$Li2-O(1)^{xi}$	1.781(40)	0.428
Li2–O(5) ^{xii}	1.904(34)	0.301
Li2-O(5)	2.034(36)	0.218
Li2–O(1) ^{xiii}	2.331(40)	0.097
		$\sum s_{ij}$ 1.044

Symmetry codes: (i) -x, y, 0.5 - z; (ii) -x, -y, -z; (iii) x, -y, 0.5 + z; (iv) x, y, -1 + z; (v) -0.5 + x, 0.5 - y, -z; (vi) -x, 1 - y, 1 - z; (vii) x, 1 - y, 0.5 + z; (viii) 0.5 + x, 0.5 - y, 1 - z; (ix) -0.5 - x, 0.5 - y, 0.5 + z; (x) x, y, 1 + z; (xi) -0.5 - x, 0.5 - y, -0.5 + z; (xii) -x, 1 - y, -z; (xiii) -0.5 - x, 0.5 + y, z.

Table 6							
Anisotropic displacement parameters of	of U,	W	and	O in	Li ₂ (UO ₂) ₄ ($WO_4)_4O$	$(Å^2).$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
U(1)	0.0097(6)	0.0056(5)	0.0107(6)	0	0.0021(5)	0
U(2)	0.0082(6)	0.0112(6)	0.0087(6)	-0.0005(5)	0.0001(5)	0.0000(4)
U(3)	0.0091(4)	0.0058(4)	0.0085(4)	0.0002(3)	-0.0004(3)	0.0003(3)
W(1)	0.0101(5)	0.0060(4)	0.0113(5)	0.0004(3)	0.0027(4)	0.0001(3)
W(2)	0.0104(5)	0.0052(4)	0.0087(5)	-0.0006(3)	0.0032(4)	-0.0002(3)
O(1)	0.027(15)	0.007(11)	0.021(14)	0	0.010(11)	0
O(2)	0.004(8)	0.017(8)	0.019(10)	0.001(7)	0.002(8)	-0.008(8)
O(3)	0.009(9)	0.010(8)	0.028(10)	0.001(6)	0.008(8)	0.010(7)
O(4)	0.020(10)	0.005(7)	0.010(8)	0.000(6)	0.000(7)	0.003(6)
O(5)	0.016(10)	0.010(8)	0.019(10)	0.002(7)	-0.006(8)	-0.006(7)
O(6)	0.019(11)	0.010(7)	0.021(9)	-0.007(7)	0.015(8)	-0.006(7)
O(7)	0.010(7)	0.012(8)	0.037(12)	0.001(7)	-0.003(8)	0.002(8)
O(8)	0.023(11)	0.005(7)	0.018(9)	0.002(7)	0.012(8)	0.008(6)
O(9)	0.011(9)	0.015(8)	0.015(9)	0.005(8)	0.000(7)	0.010(7)
O(10)	0.010(8)	0.018(9)	0.034(12)	-0.007(7)	0.005(8)	-0.004(8)
O(11)	0.014(9)	0.016(8)	0.010(8)	-0.002(7)	-0.001(7)	-0.001(7)
O(12)	0.018(11)	0.022(10)	0.034(12)	-0.009(8)	0.010(9)	-0.011(8)
O(13)	0.032(12)	0.016(9)	0.022(10)	0.008(8)	0.011(9)	0.001(8)

Note: The anisotropic displacement factor exponent takes the form $-2\pi^2[h^2a^{*2}U_{11} + \cdots + 2hka^*b^*U_{12}]$.

Table 7

Bond distances (Å), Angles (°) and bond valences S_{ij} of metal atoms in Li₂(UO₂)₄(WO₄)₄O.

U environment					
	$d_{\rm U-O}({\rm \AA})$	S _{ij}		$d_{\rm U-O}$	S _{ij}
U(1) - O(7)	1.82(4)	1.561	U(3) - O(2)	1.83(4)	1.540
$U(1) - O(7)^{i}$	1.82(4)	1.561	U(3)–O(5)	1.86(4)	1.439
$U(1) - O(8)^{n}$	2.27(2)	0.652	$U(3)-O(12)^{1x}$	2.14(2)	0.834
$U(1) - O(8)^{m}$	2.27(2)	0.652	U(3)–O(4) ^v	2.28(3)	0.649
$U(1)-O(6)^{1}$	2.36(3)	0.549	$U(3)-O(6)^{vin}$	2.34(2)	0.569
U(1)–O(6)	2.36(3)	0.549	$U(3) - O(3)^{iv}$	2.44(2)	0.478
U(1)-O(1)	2.47(3)	0.446	$U(3)-O(8)^{iv}$	2.46(3)	0.457
$\sum s_{ij}$		5.970			5.966
	$d_{\rm U-O}({ m \AA})$	S _{ij}			
$U(2)-O(11)^{vi}$	1.79(2)	1.644	Uranyl angle (°)		
U(2)–O(11)	1.79(2)	1.644			
U(2)–O(13)	2.23(3)	0.708	$O(7)-U(1)-O(7)^{i}$	176.8 (9)	
$U(2)-O(13)^{vi}$	2.23(3)	0.708	$O(11)^{vi} - U(2) - O(11)$	180	
$U(2) - O(5)^{v}$	2.32(4)	0.593	O(2)–U(3)–O(5)	176.7 (7)	
$U(2)-O(5)^{viii}$	2.32(4)	0.593			
$\sum s_{ij}$		5.890			
W environment					
	$d_{\rm U-O}({\rm \AA})$	Sij		d_{U-O}	S _{ij}
W(1)–O(10)	1.74(4)	1.631	W(2)–O(9)	1.73(4)	1.676
W(1)–O(13)	1.79(3)	1.436	W(2)–O(3)	1.88(3)	1.114
W(1)–O(4)	1.85(1)	1.205	W(2)–O(8)	1.90(1)	1.047
W(1)–O(12)	1.87(2)	1.145	W(2)–O(6)	1.91(1)	1.047
$W(1) - O(3)^{x}$	2.10(3)	0.620	W(2)–O(1)	1.98(2)	0.857
$W(1)-O(7)^{vii}$	2.59(5)	0.164	W(2)–O(2)	2.43 (5)	0.255
$\sum s_{ij}$		6.201			5.996
Li environment					
	$d_{\rm U-O}({\rm \AA})$	Sij			
Li–O(9)	1.80(6)	0.417			
$Li-O(10)^i$	2.08(7)	0.185			
Li–O(11) ^{xi}	2.14(6)	0.162			
Li–O(4) ^{xi}	2.18(6)	0.145			
Li–O(13) ^{xiii}	2.70(5)	0.035			
Li–O(12) ^{xii}	2.85(6)	0.024			
Li–O(11) ^{xiv}	2.98(7)	0.017			
$\sum s_{ij}$		0.985			

Symmetry codes: (i) -x, y, 1.5 - z; (ii) -x, -1 + y, 1.5 - z; (iii) x, -1 + y, z; (iv) 0.5 - x, -0.5 + y, 1.5 - z; (v) 0.5 - x, 0.5 - y, 1 - z; (vi) 1 - x, 1 - y, -z; (vii) 0.5 + x, 0.5 - y, -0.5 + z; (viii) 0.5 - x, 0.5 + y, 1.5 - z; (iv) 0.5 - x, 1.5 - y, 1 - z; (x) x, 1 - y, -0.5 + z; (xi) 0.5 - x, 0.5 + y, 0.5 - z; (xii) -0.5 + x, 1.5 - y, 0.5 + z; (xiii) -x, y, 0.5 - z; (xiv) -0.5 + x, 0.5 - y, 0.5 + z.

Table 9

-3110

-427

 $Li_2(UO_2)_4(WO_4)_4O.$

Table 8 Observed and calculated X-ray powder diffraction pattern for $Li_2(UO_2)(WO_4)_2.$

hkl	$2\theta_{\rm obs}$	$2\theta_{cal}$	<i>I</i> (%)	h k l	$2\theta_{\rm obs}$	$2\theta_{\rm cal}$	<i>I</i> (%)
110	13.183	13.137	63	062	49.314	49.336	10
020	13.903	13.867	89	421	49.635	49.653	1
111	17.770	17.777	2	261	50.140	50.143	3
021	18.336	18.327	3	313	51.036	51.043	3
200	22.399	22.407	100	024	51.263	51.268	2
130	23.750	23.712	19	170	51.329	51.361	1
002	24.001	23.982	5	243	52.125	52.130	2
211	26.401	26.409	18	431	52.370	52.336	11
220	26.449	26.443	6	171	52.954	52.926	3
131	26.603	26.619	5	422	54.351	54.359	17
112	27.410	27.436	28	440	54.417	54.434	9
022	27.808	27.804	43	204	54.590	54.596	10
040	27.909	27.934	28	262	54.826	54.819	13
221	29.079	29.096	3	333	55.208	55.214	2
041	30.453	30.468	3	134	55.225	55.220	3
202	33.022	33.049	3	352	55.818	55.812	4
231	33.136	33.133	8	441	55.922	55.939	2
132	33.949	33.975	7	253	56.751	56.745	2
310	34.665	34.625	9	044	57.445	57.429	9
222	35.987	35.993	44	172	57.477	57.444	2
240	36.071	36.097	19	080	57.746	57.717	2
150	36.961	36.955	2	510	58.578	58.597	2
241	38.159	38.145	2	081	59.177	59.168	2
151	38.941	38.965	2	413	60.231	60.219	8
023	39.016	39.042	2	442	60.300	60.306	2
330	40.127	40.124	10	451	60.363	60.359	2
312	42.530	42.558	12	181	60.428	60.418	3
213	43.666	43.692	5	521	61.490	61.469	2
133	43.833	43.828	2	244	62.432	62.427	4
251	43.843	43.868	2	530	62.433	62.431	4
061	44.245	44.248	3	280	62.679	62.700	5
152	44.571	44.535	9	353	62.992	62.996	1
223	45.469	45.475	1	082	63.386	63.396	1
400	45.756	45.725	14	433	63.988	63.994	4
332	47.278	47.284 2		281	64.062	64.083	2
411	47.972	47.990	9	512	64.261	64.229	3
420	48.003	48.010	9	173	64.550	64.515	2
233	48.355	48.331	2	334	65.191	65.196	2
260	48.500	48.514	3	064	66.851	66.873	1
004	49.127	49.096	6	215	67.800	67.795	2

a = 7.932 (1)Å, b = 12.769 (2)Å, c = 7.417 (1)Å, $F_{20} = 51$ (0.0163; 24).

c-axis, Fig. 1a. Such infinite chains were observed in many uranyl oxides, where the chains are connected by various ways, as UVO₅ [34], USbO₅ [35], UMo₂O₈ [11], U₂P₂O₁₀ [36], and other recently studied compounds like uranyl divanadate, (UO₂)₂V₂O₇ [37,38], pentahydrated uranyl orthovanadate $(UO_2)_3(VO_4)_2 \cdot 5H_2O$ [39], $M_6(UO_2)_5(VO_4)_2O_5$ with M = Na, K, Rb [40,41], and $K_2(UO_2)W_2O_8$ [26]. The topological studies of uranyl compounds [42] shows the importance of these $(UO_5)_{\infty}$ chains in the structure of numerous uranyl compounds. The only independent tungsten atom present a distorted octahedral environment of oxygen atoms, with two particularly short distances, W-O(4) and W-O(5), at 1.743(14) and 1.765(9)Å, three intermediates, W-O(2),

h k l	$2\theta_{\rm obs}$	$2\theta_{cal}$	I(%)	h k l	$2\theta_{\rm obs}$	$2\theta_{cal}$	I(%)
002	08.040	8.060	16	-134	46.300	46.293	2
-202	14.021	14.042	2	-11111	47.079	47.074	3
110	15.440	15.455	11	-608	47.320	47.302	13
-111	15.700	15.721	1	330	47.455	47.481	2
2021	6.159	16.155	13	331	47.969	47.949	3
-112	16.960	16.973	2	-428	48.410	48.438	1
112	17.880	17.891	7	-714	48.621	48.598	4
-113	18.999	19.021	7	-623	48.880	48.894	1
204	22.139	22.130	78	517	49.170	49.189	1
114	23.101	23.093	32	-334	49.400	49.376	12
-311	23.720	23.729	1	-624	49.660	49.645	4
-312	24.261	24.257	4	333	49.950	49.981	1
311	24.720	24.734	2	712	50.200	50.182	1
400	25.741	25.735	11	136	50.920	50.943	1
312	26.200	26.192	4	-4012	52.700	52.684	6
-314	27.180	27.184	100	-804	52.940	52.899	5
-116	28.000	28.003	8	335	53.380	53.363	8
020	28.300	28.294	36	2012	53.579	53.548	6
021	28.600	28.588	1	-627	53.930	53.955	3
022	29.460	29.455	2	-5111	54.140	54.170	6
023	30.879	30.850	1	-718	54.700	54.722	6
-221	31.160	31.159	4	-530	54.800	54.766	6
-222	31.700	31.702	3	-533	55.040	55.049	1
-316	32.020	32.025	2	-628	56.040	56.017	11
-223	32.740	32.758	5	-535	56.920	56.924	1
-208	33.120	33.105	6	1113	57.639	57.658	1
117	33.300	33.328	1	0212	58.120	58.099	4
-224	34.299	34.286	2	040	58.480	58.473	2
025	34.960	34.977	1	-339	59.341	59.324	1
-118	35.240	35.231	25	043	59.942	59.940	1
510	35.400	35.381	22	-821	60.515	60.533	1
224	36.220	36.190	17	4210	60.700	60.714	1
316	36.440	36.422	2	-4212	60.860	60.853	6
026	37.600	37.582	1	-243	61.100	61.094	4
-421	38.399	38.381	4	1114	62.101	62.110	1
-422	38.620	38.615	7	6010	62.562	62.565	1
-424	40.401	40.394	1	-826	62.958	62.980	1
-319	41.540	41.535	1	5111	63.001	63.024	1
-425	41.881	41.893	1	-245	63.318	63.317	1
318	43.219	43.197	13	4211	64.319	64.338	1
424	43.670	43.676	1	-539	64.342	64.352	1
-132	44.100	44.117	4	-734	64.959	64.976	1
132	44.519	44.511	3	731	65.299	65.309	1
604	44.860	44.830	5	441	65.360	65.369	1
2010	45.040	45.049	9	913	65.501	65.497	1

Observed and calculated X-ray powder diffraction pattern for

a = 14.026 (2) Å, b = 6.313 (1) Å, c = 22.306 (3) Å and $\beta = 98.864$ (8)°, $F_{20} = 36 \ (0.0146; \ 38).$

-1004

67.040

11

1

45.114

45.949

45.141

45.960

W-O(3) and W-O(6) at 1.886(1), 1.964(4) and 2.035(9) Å, respectively, and one longer, W-O(4)viii at 2.242(14) Å. Each WO₆ octahedron shares corners O(2), O(3), O(4) and $O(4)^{iv}$ with four adjacent octahedra to form a perovskite layer WO₄ parallel to (010) plane, Fig. 1b. Thus, the crystal structure of this compound is obtained by the association by edge-sharing of these two entities, infinite WO₄ perovskite layers at $y = \frac{1}{4}$ and $\frac{3}{4}$,

6

67.031

and $(UO_5)_{\infty}$ uranyl chains, giving a three-dimensional framework and creating mono-dimensional tunnels running along the *c*-axis, Figs. 2a and b. The tunnels contain the Li⁺ cations disordered on two crystal-lographic sites.

Fig. 1. Representation of the two building entities forming the crystal structure of $Li_2UO_2(WO_4)_2$, (a) $(UO_5)_{\infty}$ infinite chains of edge-sharing UO_7 pentagonal bipyramids running down the *c*-axis and (b) WO_4 perovskite-type layer of corner-sharing WO_6 octahedra parallel to (010) plane.

Bond valence sums calculation provides values of 6.239, 6.224, 0.751 and 1.044 for U, W, Li(1) and Li(2), respectively, which are consistent with formal valences U^{6+} , W^{6+} and Li⁺. For oxygen atoms the calculated valence bond sums ranged from 2.022 to 2.272 with an average value of 2.173, showing that the oxygen atoms are only in the ion oxide form.

The structure of $Li_2UO_2(WO_4)_2$ is different to that of other $M_2 UO_2 (WO_4)_2$ compounds with M = Ag, Na, K, Rb, recently described [26,27]. In all cases, the structure results from two chains, (i) $(UO_5)_{\infty}$ infinite chains built from UO_2^{2+} uranyl ion in pentagonal bipyramid coordination shared by equatorial edges and (ii) $(WO_5)_{\infty}$ chains built from WO_6 octahedra shared by corners. In these last compounds (M = Ag, Na, K, Rb), WO₆ octahedra of two adjacent chains share edges to form $(W_2O_8)_{\infty}$ double chains. These infinite double chains $(W_2O_8)_{\infty}$ are also connected to the uranyl $(UO_5)_{\infty}$ chain by sharing edges to give sheets $[(UO_2)W_2O_8]^{2-}$. The alkaline ions are located in the interlayer spaces between these sheets. While in $Li_2UO_2(WO_4)_2$ compound, infinity of parallel $(WO_5)_{\infty}$ chains share opposite corners to form parallel perovskite sheets of WO₆ octahedra which are linked together by $(UO_5)_{\infty}$ uranyl infinite chains to create tunnels populated by the lithium ions. In fact, only Li⁺ can be accommodate to the dimensions of the channels, so the ionic radius of the alkaline ion governs the type of structure obtained, open framework or layered network.

It is also interesting to compare the structure of $Li_2UO_2(WO_4)_2$ ($Li_2UW_2O_{10}$) with those of UMO_5 (M = Mo, Sb, V, Nb) compounds which contain

Fig. 2. Projection of the Li₂UO₂(WO₄)₂ crystal structure, (a) view on the (001) plane showing WO₄ perovskite layers staked along *b*-axis which are linked by $(UO_5)_{\infty}$ infinite chains to create tunnels occupied by Li atoms and (b) view of the structure in the (100) plane. Note that two successive $(UO_5)_{\infty}$ infinite chains are not at the same *x*-coordinate.

Fig. 3. Crystal structures of compounds built from MO_4 perovskite-type layers connected by $(UO_5)_{\infty}$ infinite chains, (a) UMO_5 compounds (M = Mo, V, Nb), (b) Li₂UO₂(WO₄)₂ where half of the $(UO_5)_{\infty}$ infinite chains are missing and (c) USbO₅ where successive uranophane anion sheets are translated.

 U^{4+} (M = Mo) [43] or U^{5+} (M = Sb, V, Nb) [34,35,44]. In these compounds, $(UO_5)_{\infty}$ chains share edges with square bases of MO_6 distorted octahedra (Fig. 3). The resulting layers, of uranophane sheet anion topology [42] where pentagons are occupied by U and squares by W, are stacked in registry by perpendicular chains containing -U-O-U-O- and -M-O-M-O- for M = Mo, V, Sb leading to the formation of MO_4 perovskite-type slabs. In these compounds, no uranyl group is present, the U–O bond lengths along the chains perpendicular to the layers are greater than 2.0 Å. In Li₂UO₂(WO₄)₂ one-half of the U atom are missing, so the layers do not exist any more but the arrangement in a plane is limited to ribbons of one $(UO_5)_{\infty}$ chain

flanked on both sides by chains of WO₅ corner-sharing octahedra, two consecutive ribbons are translated of (a+b)/2, so the -M-O-M-O- chains and then the perovskite-type layers remain while the -U-O-U-Ochains are broken and limited to O = U = O entities. One can imagine that half of the U atoms of the U MO_5 structure is removed and substituted by Li allowing the formation of the short uranyl bonds. Surprisingly, USbO₅ [35] differs of the other U MO_5 (M = Mo, V, Nb) [34,43,44] compounds in the stacking of the layers, displacement of successive layers leads to heterometallic -U-O-Sb-O-U-O-Sb-O- chains (Fig. 3c). The parameters of the orthorhombic unit cell of U MO_5 (M = Mo, V, Nb) and Li₂UO₂(WO₄)₂ are comparable

Table 10 Orthorhombic unit cell parameters and metal-oxygen distances in the -M-O-M-O- chains for Li₂UO₂(WO_4)₂ and U MO_5 (M=Mo, V, Nb).

Compound	A	b	С	$d_{\mathrm{M-O}}$	
Li ₂ UO ₂ (WO ₄) ₂	7.9372(15)	12.786(2)	7.4249(14)	1.765(9)	2.242(15)
UMoO ₅	$4.1252(2) \times 2$	12.746(1)	7.3494(7)	1.655(8)	2.471(8)
UVO ₅	$4.1231(1) \times 2$	12.3641(1)	7.2071(1)	1.648(5)	2.476(5)
UNbO ₅	4.124(4) × 2	6.434(4) × 2	7.434(4)	1.700(2)	2.424(2)

and, systematically short and long *M*–O distances alternate in the -M–O–M–O– chains (Table 10). The existence of a solid solution of the type $\text{Li}_{2x}\text{U}_x^{6+}$ $\text{U}_{2-2x}^{4+}M_2^{6+}\text{O}_{10}$ can thus be imagined with molybdenum or the tungsten; unfortunately, the phase UWO₅ does not exist and $\text{Li}_2\text{UO}_2(\text{MoO}_4)_2$ adopts a completely different structure based on chains of corner-sharing uranyl square bipyramids and MoO₄ tetrahedra [45].

3.2. $Li_2(UO_2)_4(WO_4)_4O$

The crystal structure of $Li_2(UO_2)_4(WO_4)_4O$ contains three independent uranium atoms, U(1) and U(2) in particular positions (4e) and (4a), respectively, and U(3) in a general (8f) site. Each uranium cation is strongly bonded at short distances to two oxygen atoms: O(7)and $O(7)^{1}$ at 1.82(4) Å for U(1); O(11) and O(11)^{v_{1}} at 1.79(2) Å for U(2) and O(2) at 1.83(4) Å, O(5) at 1.86(4)Å for U(3), forming a perfectly linear uranyl ion with U(2) atom and approximately linear uranyl ions with U(1) and U(3), Table 7. The U(1) O_2^{2+} uranyl ion is coordinated by five oxygen atoms, located at the equatorial vertices of a pentagonal bipyramid, with O(1)at 2.47(3) Å, and symmetrically disposed to O(1)-U(1)-O(7) plane, $O(8)^{ii}$, $O(8)^{iii}$ and O(6), $O(6)^{i}$ at 2.27(2)Å and 2.36(3)Å, respectively. This coordination is also observed for U(3) with equatorial atoms, $O(12)^{ix}$, $O(4)^{v}$, $O(6)^{viii}$, $O(3)^{iv}$, $O(8)^{iv}$ situated in the range 2.14(2)-2.46(3)Å. The U(2) atom is situated in less common tetragonal bipyramid environment, where the $U(2)O_2^{2+}$ uranyl ion is surrounded in the equatorial plane by diametrically opposed O(13), O(13)^{vi} and O(5)^v, O(5)^{viii} atoms at 2.23(3) and 2.32(4)Å, respectively. In this compound, the equatorial mean bond lengths of 2.35(2)and 2.34(2) Å for U(1) O_2^{2+} and U(3) O_2^{2+} in pentagonal bipyramid coordination, and of 2.28(3) Å for U(2) O_2^{2+} uranyl ion in tetragonal bipyramid environment are in excellent agreement with the average bond lengths of 2.37(9) and 2.28(5) Å determined by Burns et al. [31] from numerous well-refined structures, for uranyl ions in pentagonal and tetragonal bipyramid coordination, respectively. There are two independent tungsten sites W(1) and W(2) in the structure of $Li_2(UO_2)_4(WO_4)_4O$. Both W atoms present a strongly distorted octahedral environment of oxygen atoms. The W(2) octahedron is formed in the equatorial plane by O(3), O(8), O(6), O(1)

Fig. 4. View on the (102) plane of the tetrameric W_4O_{21} tungstate groups connected to the neighboring trimeric U_3O_{17} uranyl units, to give a $[U_3W_4O_{27}]$ uranyl tungstate ribbon, four octahedra wide.

atoms with distances in the range 1.88(3)-1.98(2) Å and by two apical oxygen atoms O(9) and O(2), which form a short (1.73(4) Å) and a long bond (2.43(5) Å), respectively. For the W(1) octahedron, the oxygen atoms O(13), O(4), O(12) and O(3)^x, in the equatorial plane, are in the range 1.79(3)-2.10(3) Å whereas the apical atoms O(10) and O(7) are at 1.74(4) and 2.59(5) Å, respectively. This strong distorted octahedral geometry is observed in other W containing compounds with four intermediate bonds, one short and one long in a *trans* arrangement [26,27].

In the structure of $Li_2(UO_2)_4(WO_4)_4O$, one $U(1)O_7$ pentagonal bipyramid shares two opposite edges O(6)– O(8) with two adjacent $U(3)O_7$ bipyramids to form a trimeric unit U_3O_{17} , Fig. 4. The distorted tungsten octahedra are associated in linear sequences $W(1)O_6$ – $W(2)O_6$ – $W(2)O_6$ – $W(1)O_6$ by sharing opposite corners O(3), O(1), O(3) to give a tetrameric group W_4O_{21} , Figs. 4 and 5. These W_4O_{21} tetrameric units alternate regularly along *b* with trimeric U_3O_{17} units, to whom

Fig. 5. Projection on the (102) plane of the $[U_4W_4O_{31}]$ layer of the $Li_2(UO_2)_4(WO_4)_4O$ compound resulting from the connection of $[U_3W_4O_{27}]$ ribbons by U(2)O₆ octahedra. The pentagonal holes of the polyhedral bi-dimensional arrangement are populated by Li atoms.

they are linked by sharing equatorial edges and corners, to form an infinite $[U_3W_4O_{27}]$ ribbons, four WO₆ octahedra wide, Fig. 4. The uranyl U = O and the short and long W–O bonds are perpendicular to the plane of the ribbon. This ribbon constitutes part of the layer arrangement found, for example, in UMO₅ (M = Mo, Sb, V, Nb) compounds [34,35,43,44].

Two parallel ribbons related by the inversion center occupied by the uranium atom U(2) in special position (4*a*), are linked together by U(2)O₆ tetragonal bipyramids sharing opposite equatorial corners O(13) with W(1)O₆ octahedra, to form an infinite $[U_4W_4O_{31}]$ layer parallel to (102) plane, Fig. 5. The uranyl bonds U(2) = O(11) are, contrary to other uranyl bonds, in the layer. The layered arrangement of pentagonal bipyramids and octahedra creates holes formed from

two edge-shared pentagons flanked by two triangles, Fig. 5. The centers of pentagons are occupied by the Li atoms. The coordination around Li is completed by two oxygen atoms O(9) and O(10) at short distances to form a distorted pentagonal bipyramid. In fact, the Li⁺ ion is displaced from the center of the pentagon toward the O(4)-O(11) edge leading to a distorted tetrahedral environment if only the short Li-O distances are considered, Fig. 6. Considering the LiO₇ entities, the bi-dimensional arrangement obtained from UO7 and LiO₇ pentagonal bipyramids and from WO₆ and UO₆ distorted octahedra, are similar to the common layers observed in the UMO₅ (M = Mo, Sb, V, Nb) compounds [34,35,43,44] and based on the uranophane sheet anion topology [42] shown in Fig. 7; these sheets are built from pentagons whose centers are populated by U

Fig. 6. Environment of the lithium ion in $Li_2(UO_2)_4(WO_4)_4$ from (a) pentagonal bipyramid to (b) distorted tetrahedron.

and Li in an ordered sequence 3U-2Li and form squares whose centers are occupied by U and W in an ordered sequence 1U-4W in such a way that the square whose center is populated by U shares its edges or corners with pentagons whose centers are only occupied by Li. It is the first example of compound with uranophane sheet anion topology with the centers of the squares and pentagons, both populated by U and an other metallic atom. For sheets with occupied triangles as in Na_{6-x}(UO₂)₃(H_xPO₄)(PO₄)₃ with x = 0.5 [46], the pentagons are half populated by U and Na atoms in pentagonal bipyramid coordination.

The stacking perpendicularly to (102) plane of successive layers deduced one from the other by the (a +b)/2 translation, is effectuated by sharing the oxygen atoms that do not participate to the sheet formation leading to perpendicular heterometallic infinite chains -O(5)-U(2)-O(5)-U(3)-O(2)-W(2)-O(9)-Li-O(10)-W(1)-O(7)-U(1)-O(7)-W(1)-O(10)-Li-O(9)-W(2)-O(2)-U(3)-O(5)-U(2)-O(5)-, Fig. 8. Thus, the piling of these layers generates a lithium uranyl tungstate framework [Li₂U₄W₄O₂₅]. We can also consider that the uranium and tungsten polyhedra form a new uranyl tungstate framework $[U_4W_4O_{25}]^{2-}$ with rectangular mono-dimensional channels running along the [110] direction with approximate dimensions $2.8 \,\mathrm{A} \times 5.6 \,\mathrm{A}$, which are occupied by lithium cations, Fig. 9.

On the basis of U–O, W–O and Li–O distances, the calculated bond valence sums are 5.97 v.u. for U(1) and U(3), 5.89 v.u. for U(2), 6.20 and 6.00 v.u. for W(1) and W(2), respectively, and 0.985 v.u. for Li, these values are consistent with formal valences of U^{6+} , W^{6+} and Li^+ . The bond valence sums for the O atoms are in the range of 1.75–2.17 v.u. with an average value of 2.08 v.u.

To evidence the lithium cations mobility in the tunnels of the two structures, ionic conductivity measurements were carried out. Thus, Fig. 10 indicates the temperature dependence of the conductivity for both compounds. The observed linear evolution of $\log \sigma$ with reverse temperature shows that the ionic conductivity obeys to the Arrhenius law over the studied temperature range,

Fig. 7. The uranophane sheet anion topology. In $Li_2(UO_2)_4(WO_4)_4O$ the centers of the pentagons are populated by U and Li in an ordered sequence 3U-2Li and the centers of the squares are occupied by U and W in an ordered sequence 1U-4W.

with activation energy values of 0.71 and 0.81 eV for $\text{Li}_2(\text{UO}_2)_4(\text{WO}_4)_4\text{O}$ and $\text{Li}_2(\text{UO}_2)(\text{WO}_4)_2$, respectively. The observed values are comparable to those of the better Li^+ ion conductivity solid electrolytes such as LISICON or Li- β -alumina.

4. Conclusion

In accordance with the numerous previous investigations of the uranyl-containing compounds, this study confirms the complexity and interest of the crystal chemistry of the uranyl tungstates and the key role of the alkali cation on both connectivity and dimensionality of the obtained crystal structures. While Na, K or Rb occupy the inter-space between layers formed by the linkage of uranyl and tungsten polyhedra [26,27], the smaller Li counter-cation leads to the formation of frameworks. It has been shown above that the structures of Li₂UO₂(WO₄)₂ and Li₂(UO₂)₄(WO₄)₄O are related to those of UMO₅ (M = Mo, Sb, V, Nb) compounds [34,35,43,44]. In Li₂UO₂(WO₄)₂, one-half of the (UO₅)_∞

Fig. 8. Stacking of $[Li_2U_4W_4O_{35}]$ layers perpendicular to the (102) plane leading to the formation of heterometallic chains of corner-shared UO₇, UO₆, WO₆ and LiO₇ polyhedra.

Fig. 9. Projection of the $Li_2(UO_2)_4(WO_4)_4O$ crystal structure on the ($\overline{1}01$) plane showing the rectangular tunnels occupied by Li atoms.

Fig. 10. Temperature dependence of ionic conductivity for Li_2 $(UO_2)(WO_4)_2$ and $Li_2(UO_2)_4(WO_4)_4O$ compounds.

References

- [1] S.V. Krivovichev, P.C. Burns, Can. Mineral. 39 (1) (2001) 207.
- [2] I. Duribreux, Thesis, UST-Lille, 1997.
- [3] S.V. Krivovichev, C.L. Cahill, P.C. Burns, Inorg. Chem. 42 (7) (2003) 2459.
- [4] S.V. Krivovichev, C.L. Cahill, P.C. Burns, Inorg. Chem. 41 (1) (2001) 34.
- [5] S.V. Krivovichev, R.J. Finch, P.C. Burns, Can. Mineral. 40 (1) (2002) 193.
- [6] G.G. Sadikov, T.I. Krasovskaya, Yu.A. Polyakov, V.P. Nikolaev, Izvzst. Akad. Nauk SSSR, Neutrog. Mater. 24 (1) (1988) 109.
- [7] E.A. Tatarinova, L.B. Serezkhin, V.N. Serezkhin, Radiokhimiya 33 (3) (1991) 61.
- [8] S.V. Krivovichev, P.C. Burns, Can. Mineral. 39 (1) (2001) 197.
- [9] S.V. Krivovichev, P.C. Burns, Can. Mineral. 40 (1) (2002) 201.
- [10] S. Obbade, C. Dion, M. Saadi, S. Yagoubi, F. Abraham, J. Solid State Chem. 174 (2003) 19.
- [11] T.L. Cremers, P.G. Eller, R.A. Penneman, C.C. Heerick, Acta Crystallogr. 39 (1983) 1163.
- [12] S.V. Krivovichev, P.C. Burns, Can. Mineral. 38 (2000) 717.
- [13] V.N. Serezkhin, V.F. Chuvaev, L.M. Kovba, V.K. Trunov, Dokl. Akad. Nauk. SSSR. 210 (1973) 873.
- [14] S.V. Krivovichev, P.C. Burns, Can. Mineral. 38 (2000) 847.
- [15] M. Seleborg, Acta. Chem. Scand. 21 (1967) 499.
- [16] B.M. Gatehouse, P. Leverett, J. Chem. Soc. A 6 (1968) 1398.
- [17] B.M. Gatehouse, P. Leverett, J. Chem. Soc. D 12 (1970) 740.
- [18] L.M. Kovba, V.K. Trunov, A.J. Grigorev, Zh. Strukt. Khim. 6 (1965) 919.
- [19] V.N. Serezhkin, V.V. Tabachenko, L.B. Serezhkina, Radiokhimiya 20 (1978) 214.
- [20] V.N. Serezkhin, L.M. Kovba, V.K. Trunov, Kristallografiya 6 (1972) 1127.
- [21] V.N. Serezkhin, L.M. Kovba, L.G. Mokarevitch, Kristallografiya 25 (1980) 858.

- [22] M. Sundberg, B.O. Marider, J. Solid State Chem. 121 (1996) 167.
- [23] W. Freundlich, M. Pagés, C. R. Acad. Sci. Paris C 269 (1969) 392.
- [24] B. Ampe, J.M. Leroy, D. Thomas, G. Tridot, Rev. Chim. Miner. 5 (1968) 789.
- [25] A.I. Kryukova, R.A. Bragina, G.N. Kazantsev, I.A. Korshunov, Radiokhimiya 29 (1987) 599.
- [26] S. Obbade, C. Dion, E. Bekaert, S. Yagoubi, M. Saadi, F. Abraham, J. Solid State Chem. 172 (2003) 305.
- [27] S.V. Krivovichev, P.C. Burns, Solid State Sci. 5 (2003) 373.
- [28] G.M. Sheldrick, SAINT Plus version 5.00, Bruker Analytical X-ray Systems, Madison, WI, 1998.
- [29] G.M. Sheldrick, "SHELXTL NT, Program Suite for solution and Refinement of Crystal Structure" version 5.1, Bruker Analytical X-ray Systems, Madison, WI, 1998.
- [30] G.M. Sheldrick, SADABS: Siemens Area Detector Absorption Correction Program, using SMART CCD based on the method of Blessing: R.H. Blessing; Acta Crystallogr. A 51 (1995) 33.
- [31] P.C. Burns, R.C. Ewing, F.C. Hawthorne, Can. Mineral. 35 (1997) 1551.
- [32] N.E. Brese, M. O'Keeffe, Acta Crystallogr. B 47 (1991) 192.
- [33] G. Smith, R.J. Snyder, J. Appl. Crystallogr. 12 (1979) 60.
- [34] P.G. Dickens, C.P. Stuttard, R.G.J. Ball, A.V. Powell, S. Hull, S. Patat, J. Mater. Chem. 2 (1992) 161.
- [35] P.G. Dickens, G.P. Stuttard, J. Mater. Chem. 2 (1992) 691.
- [36] P. Benard, D. Loüer, N. Dacheux, V. Brandel, M. Genet, Chem. Mater. 6 (1994) 1049.
- [37] N. Tancret, S. Obbade, F. Abraham, Eur. J. Solid. State Inorg. Chem. 32 (1995) 195.
- [38] A.M. Chippindale, P.G. Dickens, G.J. Flynnand, C.P. Stuttard, J. Mater. Chem. 5 (1995) 141.
- [39] M. Saadi, C. Dion, F. Abraham, J. Solid State Chem. 150 (2000) 72.
- [40] C. Dion, S. Obbade, E. Raekelboom, F. Abraham, M. Saadi, J. Solid State Chem. 155 (2000) 342.
- [41] S. Obbade, M. Saadi, L. Duvieubourg, C. Dion, F. Abraham, J. Solid State Chem. 173 (2003) 1.
- [42] P.C. Burns, M.L. Miller, R.C. Ewing, Can. Mineral. 34 (1996) 845.
- [43] O.G. D'yachenko, V.V. Tabachenko, R. Tali, L. Kovba, B.O. Marinder, M. Sundberg, Acta Crystallogr. B 52 (1996) 961.
- [44] M. Schleifer, J. Busch, R. Gmelin, Z. Anorg. Allg. Chem. 625 (1999) 1985.
- [45] V. Krivovichev, P.C. Burns, Solid State Sci. 5 (2003) 481.
- [46] Yu.E. Gorbunova, S.A. Linde, A.V. Lavrov, A.B. Pobedina, Dokl. Akad. Nauk SSSR 251 (1980) 385.